Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
16th IEEE International Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2022 ; : 553-560, 2022.
Article in English | Scopus | ID: covidwho-2315557

ABSTRACT

The combination of pervasive sensing and multimedia understanding with the advances in communications makes it possible to conceive platforms of services for providing telehealth solutions responding to the current needs of society. The recent outbreak has indeed posed several concerns on the management of patients at home, urging to devise complex pathways to address the Severe Acute Respiratory Syndrome (SARS) in combination with the usual diseases of an increasingly elder population. In this paper, we present TiAssisto, a project aiming to design, develop, and validate an innovative and intelligent platform of services, having as its main objective to assist both Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) multi-pathological patients and healthcare professionals. This is achieved by researching and validating new methods to improve their lives and reduce avoidable hospitalisations. TiAssisto features telehealth and telemedicine solutions to enable high-quality standards treatments based on Information and Communication Technologies (ICT), Artificial Intelligence (AI) and Machine Learning (ML). Three hundred patients are involved in our study: one half using our telehealth platform, while the other half participate as a control group for a correct validation. The developed AI models and the Decision Support System assist General Practitioners (GPs) and other healthcare professionals in order to help them in their diagnosis, by providing suggestions and pointing out possible presence or absence of signs that can be related to pathologies. Deep learning techniques are also used to detect the absence or presence of specific signs in lung ultrasound images. © 2022 IEEE.

2.
Int J Mol Sci ; 23(16)2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-2023736

ABSTRACT

Current procedures for the assessment of chronic wound infection are time-consuming and require complex instruments and trained personnel. The incidence of chronic wounds worldwide, and the associated economic burden, urge for simple and cheap point-of-care testing (PoCT) devices for fast on-site diagnosis to enable appropriate early treatment. The enzyme myeloperoxidase (MPO), whose activity in infected wounds is about ten times higher than in non-infected wounds, appears to be a suitable biomarker for wound infection diagnosis. Herein, we develop a single-component foldable paper-based device for the detection of MPO in wound fluids. The analyte detection is achieved in two steps: (i) selective immunocapture of MPO, and (ii) reaction of a specific dye with the captured MPO, yielding a purple color with increasing intensity as a function of the MPO activity in infected wounds in the range of 20-85 U/mL. Ex vivo experiments with wound fluids validated the analytic efficiency of the paper-based device, and the results strongly correlate with a spectrophotometric assay.


Subject(s)
Body Fluids , Wound Infection , Colorimetry , Coloring Agents , Humans , Paper , Point-of-Care Testing , Wound Infection/diagnosis
3.
Sens Biosensing Res ; 36: 100487, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1946505

ABSTRACT

The COVID-19 pandemic has caused tremendous damage to the world. In order to quickly and accurately diagnose the virus and contain the spread, there is a need for rapid, sensitive, accurate, and cost-effective SARS-CoV-2 biosensors. In this paper, we report on a novel biosensor based on angiotensin converting enzyme 2 (ACE-2)-conjugated vertically-oriented silicon nanowire (vSiNW) arrays that can detect the SARS-CoV-2 spike protein with high sensitivity and selectivity relative to negative controls. First, we demonstrate the efficacy of using ACE-2 receptor to detect the SARS-CoV-2 spike protein via a capture assay test, which confirms high specificity of ACE-2 against the mock protein, and high affinity between the spike and ACE-2. We then report on results for ACE-2-conjugated vSiNW arrays where the biosensor device architecture is based on a p-n junction transducer. We confirm via analytical modeling that the transduction mechanism of the biosensor involves induced surface charge depletion of the vSiNWs due to negative electrostatic surface potential induced by the spike protein after binding with ACE-2. This vSiNW surface charge modulation is measured via current-voltage characteristics of the functionalized biosensor. Calibrated concentration dependent electrical response of the vSiNW sensor confirms the limit-of-detection for virus spike concentration of 100 ng/ml (or 575 pM). The vSiNW sensor also exhibits highly specific response to the spike protein with respect to negative controls, offering a promising point-of-care detection method for SARS-CoV-2.

4.
Diagn Microbiol Infect Dis ; 104(1): 115742, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1885720

ABSTRACT

We compared ID Now™ and Hologic® Panther Aptima™ for the detection of SARS-COV-2. ID Now™ showed a positive and negative percent agreement of 86.9% and 99.7% respectively. This facilitates faster clinical decision-making, along with the rapid implementation of infection control measures, and improvement of patient flow in the emergency department toward inpatient wards.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Emergency Service, Hospital , Humans , Molecular Diagnostic Techniques/methods , Retrospective Studies , Sensitivity and Specificity
5.
Clin Chim Acta ; 529: 104-108, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1702688

ABSTRACT

BACKGROUND AND AIMS: Performance of two disposable devices for identifying subjects with low anti-SARS-CoV-2 protection was compared with that of automated enzyme-linked immunosorbent (ELISA) and chemiluminescent (CLIA) assay. MATERIALS AND METHODS: In July 2021, 123 healthcare workers (HCW), twice vaccinated by BNT162b2/Comirnaty mRNA (BioNTech-Pfizer), underwent Ab iRapid COVID-19 Quant "Neutralizing" Self-test (iRapid Self-test) and "Neutralizing" Professional-use (iRapid pro) (DIESSE, Diagnostica Senese, Siena, Italy). Simultaneously, serum Ab were determined by Maglumi 2000 plus (anti S-RBD CLIA assay, Snibe Diagnostics, Shenzhen, China) and SARS-CoV-2 "Neutralizing" Ab Chorus ELISA (DIESSE, Siena, Italy). Results were evaluated against two "protective-thresholds", 90 kBAU/L and 506 kBAU/L. RESULTS: HCW mean age, 46.2 (±12.6) years; 26 (20.5%), males, 101 (79.5%), females. The mean time interval (and standard deviation) between the first vaccine dose and Ab determination was 129.5 (±36.4) days and was neither gender (p = 0.879) nor age (p = 0.341) related. With Maglumi, 114 (89.7%) and 43 (33.8%) HCW presented Ab ≥ 90 kBAU/L and Ab ≥ 506 kBAU/L, respectively; with Chorus, 96 (75.6%) presented Ab values ≥506 kBAU/L. CLIA and ELISA agreement was 56.7%. At 90 kBAU/L, iRapid self-test and Pro sensitivities were 98.2% (95% CI: 92.7-99.8), specificity 69.2% (95% CI: 38.6-90.9%) and 76.9% (46.2-95%), respectively. At 506 kBAU/L, iRapid sensitivities were 58.1-91.6%, and specificities, 89-96.6%. On evaluating Ab at <4 and ≥4 months, protective titers had decreased. CONCLUSIONS: iRapid semi-quantitative devices had very good overall agreements of 95.1% and 95.9% for detecting individuals with low anti-SARS-CoV-2 protection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , BNT162 Vaccine , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Female , Health Personnel , Humans , Male , Middle Aged
6.
Biosensors (Basel) ; 11(11)2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1502363

ABSTRACT

Coronavirus disease (COVID-19) is a global health crisis caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) is the gold standard test for diagnosing COVID-19. Although it is highly accurate, this lab test requires highly-trained personnel and the turn-around time is long. Rapid and inexpensive immuno-diagnostic tests (antigen or antibody test) are available, but these point of care (POC) tests are not as accurate as the RT-PCR test. Biosensors are promising alternatives to these rapid POC tests. Here we review three types of recently developed biosensors for SARS-CoV-2 detection: surface plasmon resonance (SPR)-based, electrochemical and field-effect transistor (FET)-based biosensors. We explain the sensing principles and discuss the advantages and limitations of these sensors. The accuracies of these sensors need to be improved before they could be translated into POC devices for commercial use. We suggest potential biorecognition elements with highly selective target-analyte binding that could be explored to increase the true negative detection rate. To increase the true positive detection rate, we suggest two-dimensional materials and nanomaterials that could be used to modify the sensor surface to increase the sensitivity of the sensor.


Subject(s)
Biosensing Techniques , COVID-19 , Nanostructures , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , Electrochemical Techniques , Humans , Surface Plasmon Resonance
7.
IEEE Sens J ; 21(21): 23737-23750, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1416226

ABSTRACT

Recently, several methods for SARS-CoV-2 detection have been developed to obtain rapid, portable, cheap, and easy-to-use diagnostic tools. This review paper summarizes and discusses studies on the development of point-of-care devices for SARS-CoV-2 diagnosis with comparisons between them from several aspects. Various detection methods of the recently developed portable COVID-19 biosensor will be presented in this review. The discussion is divided into four major classifications based on the target biomarkers of SARS-CoV-2, such as antibodies, nucleic acids, antigens, and metabolic products. An overview of the potential development for future study is also provided. Moreover, basic knowledge of biosensors is also explained for tutoring the implementation of theory into the research of COVID-19 biosensors. This review paper is aimed to provide a tutorial by collecting the information on the development of a point-of-care device for SARS-CoV-2 detection to provide information for further research and propose the new COVID-19 portable diagnostic tool.

8.
Measur Sens ; 16: 100052, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1253369

ABSTRACT

World Health Organization (WHO) declares the COVID-19 outbreak as a pandemic. The newly emerging infection has caused around one million deaths worldwide and still counting. There is no specific treatment for the disease, and it can only contain by breaking the spread. So that early and rapid diagnosis of the infection is the only way to control the outbreak. The COVID-19 virus affects the human respiratory system and subsequently infects other vital organs. In consideration of the diagnosis, the present review focuses on the critical diagnostic approaches for COVID-19, including RT-PCR, Chest-CT scan, some biosensor-based systems, etc. Moreover, this review is a specific bird's eye view on recent developments on the point of care devices and related technologies. Additionally, it presented a small glimpse of the pathophysiology and structural aspects of COVID-19. Therefore, the current review can motivate and help the reader to develop cutting-edge diagnostic technologies for the early and rapid detection of the COVID-19.

9.
ACS Sens ; 5(10): 3043-3048, 2020 10 23.
Article in English | MEDLINE | ID: covidwho-801107

ABSTRACT

Mass testing is fundamental to face the pandemic caused by the coronavirus SARS-CoV-2 discovered at the end of 2019. To this aim, it is necessary to establish reliable, fast, and cheap tools to detect viral particles in biological material so to identify the people capable of spreading the infection. We demonstrate that a colorimetric biosensor based on gold nanoparticle (AuNP) interaction induced by SARS-CoV-2 lends itself as an outstanding tool for detecting viral particles in nasal and throat swabs. The extinction spectrum of a colloidal solution of multiple viral-target gold nanoparticles-AuNPs functionalized with antibodies targeting three surface proteins of SARS-CoV-2 (spike, envelope, and membrane)-is red-shifted in few minutes when mixed with a solution containing the viral particle. The optical density of the mixed solution measured at 560 nm was compared to the threshold cycle (Ct) of a real-time PCR (gold standard for detecting the presence of viruses) finding that the colorimetric method is able to detect very low viral load with a detection limit approaching that of the real-time PCR. Since the method is sensitive to the infecting viral particle rather than to its RNA, the achievements reported here open a new perspective not only in the context of the current and possible future pandemics, but also in microbiology, as the biosensor proves itself to be a powerful though simple tool for measuring the viral particle concentration.


Subject(s)
Betacoronavirus/chemistry , Colorimetry/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Nasal Mucosa/virology , Pharynx/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Biosensing Techniques , COVID-19 , Gold , Humans , Membrane Proteins/chemistry , Metal Nanoparticles , Pandemics , Photochemistry , Polymerase Chain Reaction , SARS-CoV-2 , Specimen Handling , Spike Glycoprotein, Coronavirus/chemistry , Threshold Limit Values , Viral Envelope Proteins/chemistry
10.
J Pharm Biomed Anal ; 191: 113604, 2020 Nov 30.
Article in English | MEDLINE | ID: covidwho-745994

ABSTRACT

Stress and stress-related diseases are leading to drastic consequences in private and professional life. Therefore, the need for stress prevention strategies is of personal and economic interest. Especially during the recent period related to covid-19 outbreak and lock-down, an ongoing discussion of increasing stress etiology is reported. Biomarker analysis may help to assist diagnosis and classification of stress-related diseases and therefore support therapeutical decisions. Due to its non-invasive sampling, the analysis of saliva has become highly attractive compared to the detection methods in other specimen. This review article summarizes the status of research, innovative approaches, and trends. Scientific literature published since 2011 was excerpted with concentration on the detection of up to seven promising marker substances. Most often reported cortisol represents the currently best evaluated stress marker, while norepinephrine (noradrenaline) or its metabolite 3-methoxy-4-hydroxyphenylglycol is also a quite commonly considered stress marker. Other complementary stress marker candidates are testosterone, dehydroepiandrosterone (DHEA) and its sulfonated analogue DHEA-S, alpha-amylase, secretory immunoglobulin A, and chromogranin A. Several working groups are researching in the field of stress marker detection to develop reliable, fast, and affordable methods. Analytical methods reported mainly focused on immunological and electrochemical as well as chromatographic methods hyphenated to mass spectrometric detection to yield the required detection limits.


Subject(s)
Biomarkers/analysis , Coronavirus Infections/metabolism , Pandemics , Pneumonia, Viral/metabolism , Saliva/chemistry , Stress, Psychological/diagnosis , Stress, Psychological/metabolism , COVID-19 , Humans , Specimen Handling
11.
Electrochem commun ; 116: 106762, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-361205

ABSTRACT

Near patient detection of viral infection represents a powerful approach for the control of emerging threats to global health. Moreover, the ability to identify individuals who have contracted the disease and developed antibodies that confer immunity is central to a return to normal daily activities. This review presents some of the recent advances in electrochemical sensors for the detection of viruses and their associated antibody profiles. Given the speed, portability, sensitivity and selectivity achieved using electrochemical detection, these sensor systems hold the promise of transformative change in clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL